Artificial Spatter Piles:

Outline

Magmatic gas and vent region

• How does morphology relate to...

Spatter - the Goldilocks of basaltic morphologies

https://hvo.wr.usgs.gov/maltimedia/archive/2002/Aug/20020802-0912_RPH_large.jpg

Theory: The degree of welding in a spatter pile is due to the accumulation rate of spatter clasts

How do we get a cooling rate? - 13

Volcanic glass is ductile and will anneal above the

glass transition temperature

Lava flows show lateral consistency across long distances

If we can put numbers on this diagram, can we constrain eruptive rates?

Location of field work

Location of field work

Devil's Garden, OR

Craters of the Moon, 1D

How do we get a cooling rate? - 28

Realistic rates?

Artificial spatter pile

Controlled cube experiments suggests we can find the boundary between spatter and tephra

Characteristics that should be correlated with overall high heat in a deposit

More connections

More squashed clasts (lower w/l ratio)

Less void space

Hotter deposit

Data Collection

3. Time above 700°C

Data Collection

Fused and unfused spatter

Minimum conditions for welding

Characteristics that should be correlated with overall high heat in a deposit

More connections More squashed clasts (lower w/l ratio)

Less void space

Hotter deposit

More connection: Amount of fusion between clasts is dependent on starting temp and time above 700°C.

Squashed clasts: Temperature, time, and cooling rate are weakly correlated. Though can be overruled by shaping during flight.

Void space: Well correlated with time and temperature. High heat = less void space.

Vesicle mode: More vesicular at faster cooling rates, lower temp... with caveats due to clast manipulation

Central cavity in clast: Found more often in cooler clasts or clasts that cooled quickly.

Craters of the Moon spatter

Cooling rate

6-9°C/min

Time above 700°C

35 to 70 min

Landing temperature

Accumulation rate

Time to build cone

Craters of the Moon spatter

Cooling rate 6-9 C/min

Time above 700°C 35 to 70 min

Landing temperature 800-950°C

Accumulation rate

Time to build cone

Numerical model to examine thermal history of deposit

Craters of the Moon spatter

Cooling rate

6-9 C/min

Time above 700 C

35 to 70 min

Landing temperature

800-950 C

Accumulation rate

0.5-2 m/h

Time to build cone

30 meters high = betwee

COTM - 0,5-2 m/h.

Artist's rendering of LRO spacecraft. Credits: NASA

21:51UT Seeing: 5-7/10 Transp: 7/10, Location: 51:53:13n, 08:45:23e
Celestron C9.25XLT, TeleVue 2.5x Powermate, Astronomik Red Type II, ImagingSource DMK21AF04.AS @30fp
882 frames used, 11 point auto MAP processing

Application to planetary science

LAWRENCE ET AL.: MARIUS HILLS CONES AND LAVA FLOWS

Figure 3. Digital Elevation Model (5 m contour intervals) derived from LROC NAC images of a volcanic dome with cone in the Marius Hills near the Constellation Program Region of Interest. Representative profiles across the lava flows are reproduced on the right.

	Craters of the Moon spatter	Moon spatter
Cooling rate	6-9°C/min	~4°C/min
Time above 700°C	35 to 70 min	
Landing temperature	800-950°C	or 1000°C
Accumulation rate	0.5-2 m/h	1-10 m/h
Time to build cone	15-60 h	10-100 h

1. By combining field observations, analytical experiments, and numerical modeling we have shown the boundary between explosive basaltic morphologies (cinder/spatter) can be quantified.

1. By combining field observations, analytical experiments, and numerical modeling we have shown the boundary between explosive basaltic morphologies (cinder/spatter) can be quantified.

2. Clast length/width, vesicularity, and fusion are correlated to thermal history of the deposit.

- 1. By combining field observations, analytical experiments, and numerical modeling we have shown the boundary between explosive basaltic morphologies can be quantified.
- 2. Clast length/width, vesicularity, and fusion are correlated to thermal history of the deposit.
- 3. Cooling rates above 10°C/min correlated with no fusing of clasts.

- 1. By combining field observations, analytical experiments, and numerical modeling we have shown the boundary between explosive basaltic morphologies can be quantified.
- 2. Clast length/width, vesicularity, and fusion are correlated to thermal history of the deposit.
- 3. Cooling rates above 10°C/min correlated with no fusing of clasts.
- 4. Lunar thermal regimes result is slower cooling, requiring slower accumulation rates, resulting in extended duration of deposition for the Marius Hills.

Thanks and Questions

